x 1 x 3 x 5 x 7 15
Nos deshacemos de los paréntesis. 3x-x+7+1=0 Sumamos todos los números y todas las variables. 2x+8=0 Movemos todos los términos que contienen x al lado izquierdo, todos los demás términos al lado derecho 2x=-8 x=-8/2 x=-4 El resultado de la ecuación 3x+1=(x-7) para usar en su tarea doméstica.
Polynomial (x−1)(x− 3)(x+5)(x+ 7) = 297 Similar Problems from Web Search If (x +1)(x+3)(x +5)(x+7) = 5760, what are the possible values of x? (x+1)(x+ 3)(x+5)(x+ 7) = 5760 The equation has a symmetry around 4.
★★ Tamang sagot sa tanong: Range of (x^2+5x+6)/(x+2) - studystoph.com. Jericho drew a portrait for 6 hours and 39 muinutes and finished it at 10: 26 p. m what time did he start drawing
Answers: 3 on a question: 18x²+3x-15 3(6x²+x-5)6x-5x6x(x+1)5(x+1)[3(x+1)x(6x-5)CORRECT ME IF MY SOLUTION IS WRONG
Step-by-Step Examples. Algebra. Solve for x Calculator. Step 1: Enter the Equation you want to solve into the editor. The equation calculator allows you to take a simple or complex equation and solve by best method possible. Step 2: Click the blue arrow to submit and see the result!
Site De Rencontre Gratuit 62 59. Understand Fraction, one step at a time Step by steps for fractions, factoring, and prime factorization Enter your math expression Fraction problems we've solved Pre AlgebraAlgebraPre CalculusCalculusLinear Algebra6+3⋅10−76+3\cdot 10-7−49−3−6\frac{-4}{9}-\frac{3}{-6}310+610\frac{3}{10}+\frac{6}{10}2x3+5=x−92\frac{2x}{3}+5= x-\frac{9}{2}5x−3y=64x−5y=12\begin{array} {l} {5x-3y = 6} \\ {4x-5y = 12} \end{array}x+42≤7x5\frac{x+4}{2}\le\frac{7x}{5}[1534]+[7124]+[2381]\left[ \begin{array}{cc} {1} & {5} \\ {3} & {4} \end{array} \right] + \left[ \begin{array}{cc} {7} & {1} \\ {2} & {4} \end{array} \right] + \left[ \begin{array}{cc} {2} & {3} \\ {8} & {1} \end{array} \right][3201]⋅[5268]\left[ \begin{array}{cc} {3} & {2} \\ {0} & {1} \end{array} \right] \cdot \left[ \begin{array}{cc} {5} & {2} \\ {6} & {8} \end{array} \right]Calculate the determinant [25−50]\left[ \begin{array}{cc} {2} & {5} \\ {-5} & {0} \end{array} \right]5x−3y=64x−5y=12\begin{array} {l} {5x-3y = 6} \\ {4x-5y = 12} \end{array}3e3x⋅e−2x+5=23e^{3x} \cdot e^{-2x+5}=229⋅x−5y=1945⋅x+3y=2\begin{array} {l} {\frac{2}{9} \cdot x-5y = \frac{1}{9}} \\ {\frac{4}{5}\cdot x+3y = 2} \end{array}Analyze the function for xfx=x3−xfx=x^3-xtanx+x\tanx+\sqrt{x}Calculate the determinant [−3782]\left[ \begin{array}{cc} {-3} & {7} \\ {8} & {2} \end{array} \right]Find the characteristic polynomial [12−24]\left[ \begin{array}{cc} {1} & {2} \\ {-2} & {4} \end{array} \right][−1341]\left[ \begin{array}{cc} {-1} & {3} \\ {4} & {1} \end{array} \right][0−1−21]⋅[1734]\left[ \begin{array}{cc} {0} & {-1} \\ {-2} & {1} \end{array} \right] \cdot \left[ \begin{array}{cc} {1} & {7} \\ {3} & {4} \end{array} \right]Find the inverse matrix [3−2314−232−5]\left[ \begin{array}{ccc} {3} & {-2} & {3} \\ {1} & {4} & {-2} \\ {3} & {2} & {-5} \end{array} \right][21−52−3−4−317]+[41−43−5−6271]\left[ \begin{array}{ccc} {2} & {1} & {-5} \\ {2} & {-3} & {-4} \\ {-3} & {1} & {7} \end{array} \right]+ \left[ \begin{array}{ccc} {4} & {1} & {-4} \\ {3} & {-5} & {-6} \\ {2} & {7} & {1} \end{array} \right] Never be outnumbered by your math homework again Understand the how and why See how to tackle your equations and why to use a particular method to solve it — making it easier for you to learn. Learn from detailed step-by-step explanations Get walked through each step of the solution to know exactly what path gets you to the right answer. Dig deeper into specific steps Our solver does what a calculator won’t breaking down key steps into smaller sub-steps to show you every part of the solution. Help for whatever math you're studying Pre Algebra Fraction Linear equations 1 Arithmetic Negative numbers Linear inequalities 1 Algebra Quadratic equations Linear equations 2 Systems of equations 1 Linear inequalities 2 Polynomials and quadratic expressions Pre Calculus Systems of equations 2 Exponential and logarithmic functions Adding matrices Multiplying matrices Matrix inverses and determinants Calculus Fundamental derivatives General derivatives Curve sketching Fundamental integrals General integrals Linear Algebra Matrix operations Inverse matrices Determinants Characteristic polynomial Eigenvalues Perks of a Chegg Math Solver subscription Pre-Algebra, Algebra, Pre-Calculus, Calculus, Linear Algebra math help Guided, step-by-step explanations to your math solutions Breakdown of the steps and substeps to each solution Available online 24/7 even at 3AM Cancel subscription anytime; no obligation
\bold{\mathrm{Basic}} \bold{\alpha\beta\gamma} \bold{\mathrm{AB\Gamma}} \bold{\sin\cos} \bold{\ge\div\rightarrow} \bold{\overline{x}\space\mathbb{C}\forall} \bold{\sum\space\int\space\product} \bold{\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}} \bold{H_{2}O} \square^{2} x^{\square} \sqrt{\square} \nthroot[\msquare]{\square} \frac{\msquare}{\msquare} \log_{\msquare} \pi \theta \infty \int \frac{d}{dx} \ge \le \cdot \div x^{\circ} \square \square f\\circ\g fx \ln e^{\square} \left\square\right^{'} \frac{\partial}{\partial x} \int_{\msquare}^{\msquare} \lim \sum \sin \cos \tan \cot \csc \sec \alpha \beta \gamma \delta \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \pi \rho \sigma \tau \upsilon \phi \chi \psi \omega A B \Gamma \Delta E Z H \Theta K \Lambda M N \Xi \Pi P \Sigma T \Upsilon \Phi X \Psi \Omega \sin \cos \tan \cot \sec \csc \sinh \cosh \tanh \coth \sech \arcsin \arccos \arctan \arccot \arcsec \arccsc \arcsinh \arccosh \arctanh \arccoth \arcsech \begin{cases}\square\\\square\end{cases} \begin{cases}\square\\\square\\\square\end{cases} = \ne \div \cdot \times \le \ge \square [\square] ▭\\longdivision{▭} \times \twostack{▭}{▭} + \twostack{▭}{▭} - \twostack{▭}{▭} \square! x^{\circ} \rightarrow \lfloor\square\rfloor \lceil\square\rceil \overline{\square} \vec{\square} \in \forall \notin \exist \mathbb{R} \mathbb{C} \mathbb{N} \mathbb{Z} \emptyset \vee \wedge \neg \oplus \cap \cup \square^{c} \subset \subsete \superset \supersete \int \int\int \int\int\int \int_{\square}^{\square} \int_{\square}^{\square}\int_{\square}^{\square} \int_{\square}^{\square}\int_{\square}^{\square}\int_{\square}^{\square} \sum \prod \lim \lim _{x\to \infty } \lim _{x\to 0+} \lim _{x\to 0-} \frac{d}{dx} \frac{d^2}{dx^2} \left\square\right^{'} \left\square\right^{''} \frac{\partial}{\partial x} 2\times2 2\times3 3\times3 3\times2 4\times2 4\times3 4\times4 3\times4 2\times4 5\times5 1\times2 1\times3 1\times4 1\times5 1\times6 2\times1 3\times1 4\times1 5\times1 6\times1 7\times1 \mathrm{Radianas} \mathrm{Graus} \square! % \mathrm{limpar} \arcsin \sin \sqrt{\square} 7 8 9 \div \arccos \cos \ln 4 5 6 \times \arctan \tan \log 1 2 3 - \pi e x^{\square} 0 . \bold{=} + Inscreva-se para verificar sua resposta Fazer upgrade Faça login para salvar notas Iniciar sessão Mostrar passos Reta numérica Exemplos 5x-6=3x-8 x^2-x-6=0 x^4-5x^2+4=0 \sqrt{x-1}-x=-7 \left3x+1\right=4 \log _2x+1=\log _327 3^x=9^{x+5} Mostrar mais Descrição Resolver equações lineares, quadráticas, biquadradas, com valor absoluto e com radicais passo a passo equation-calculator pt Postagens de blog relacionadas ao Symbolab High School Math Solutions – Radical Equation Calculator Radical equations are equations involving radicals of any order. We will show examples of square roots; higher... Read More Digite um problema Salve no caderno! Iniciar sessão
x 1 x 3 x 5 x 7 15